Copied to
clipboard

G = C42.156D6order 192 = 26·3

156th non-split extension by C42 of D6 acting via D6/C3=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C42.156D6, C6.972- 1+4, C4⋊C4.211D6, C122Q833C2, C42.C212S3, C422S3.7C2, (C2×C12).92C23, (C2×C6).242C24, C4.D12.12C2, C2.60(Q8○D12), C4.Dic637C2, Dic6⋊C438C2, C12.132(C4○D4), (C4×C12).201C22, D6⋊C4.113C22, C4.21(Q83S3), C4⋊Dic3.244C22, C22.263(S3×C23), Dic3⋊C4.125C22, (C22×S3).107C23, C35(C22.35C24), (C2×Dic6).182C22, (C2×Dic3).262C23, (C4×Dic3).147C22, C4⋊C4⋊S3.3C2, C6.119(C2×C4○D4), (S3×C2×C4).132C22, C2.26(C2×Q83S3), (C3×C42.C2)⋊15C2, (C3×C4⋊C4).197C22, (C2×C4).206(C22×S3), SmallGroup(192,1257)

Series: Derived Chief Lower central Upper central

C1C2×C6 — C42.156D6
C1C3C6C2×C6C22×S3S3×C2×C4C4.D12 — C42.156D6
C3C2×C6 — C42.156D6
C1C22C42.C2

Generators and relations for C42.156D6
 G = < a,b,c,d | a4=b4=1, c6=b2, d2=a2, ab=ba, cac-1=dad-1=a-1, cbc-1=a2b-1, dbd-1=b-1, dcd-1=a2b2c5 >

Subgroups: 416 in 192 conjugacy classes, 95 normal (19 characteristic)
C1, C2, C2, C2, C3, C4, C4, C22, C22, S3, C6, C6, C2×C4, C2×C4, C2×C4, Q8, C23, Dic3, C12, C12, D6, C2×C6, C42, C42, C22⋊C4, C4⋊C4, C4⋊C4, C22×C4, C2×Q8, Dic6, C4×S3, C2×Dic3, C2×Dic3, C2×C12, C2×C12, C22×S3, C42⋊C2, C4×Q8, C22⋊Q8, C42.C2, C42.C2, C422C2, C4⋊Q8, C4×Dic3, C4×Dic3, Dic3⋊C4, C4⋊Dic3, D6⋊C4, C4×C12, C3×C4⋊C4, C2×Dic6, S3×C2×C4, C22.35C24, C122Q8, C422S3, Dic6⋊C4, C4.Dic6, C4.D12, C4⋊C4⋊S3, C3×C42.C2, C42.156D6
Quotients: C1, C2, C22, S3, C23, D6, C4○D4, C24, C22×S3, C2×C4○D4, 2- 1+4, Q83S3, S3×C23, C22.35C24, C2×Q83S3, Q8○D12, C42.156D6

Smallest permutation representation of C42.156D6
On 96 points
Generators in S96
(1 92 59 31)(2 32 60 93)(3 94 49 33)(4 34 50 95)(5 96 51 35)(6 36 52 85)(7 86 53 25)(8 26 54 87)(9 88 55 27)(10 28 56 89)(11 90 57 29)(12 30 58 91)(13 79 61 42)(14 43 62 80)(15 81 63 44)(16 45 64 82)(17 83 65 46)(18 47 66 84)(19 73 67 48)(20 37 68 74)(21 75 69 38)(22 39 70 76)(23 77 71 40)(24 41 72 78)
(1 47 7 41)(2 79 8 73)(3 37 9 43)(4 81 10 75)(5 39 11 45)(6 83 12 77)(13 87 19 93)(14 33 20 27)(15 89 21 95)(16 35 22 29)(17 91 23 85)(18 25 24 31)(26 67 32 61)(28 69 34 63)(30 71 36 65)(38 50 44 56)(40 52 46 58)(42 54 48 60)(49 74 55 80)(51 76 57 82)(53 78 59 84)(62 94 68 88)(64 96 70 90)(66 86 72 92)
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96)
(1 6 59 52)(2 51 60 5)(3 4 49 50)(7 12 53 58)(8 57 54 11)(9 10 55 56)(13 16 61 64)(14 63 62 15)(17 24 65 72)(18 71 66 23)(19 22 67 70)(20 69 68 21)(25 30 86 91)(26 90 87 29)(27 28 88 89)(31 36 92 85)(32 96 93 35)(33 34 94 95)(37 75 74 38)(39 73 76 48)(40 47 77 84)(41 83 78 46)(42 45 79 82)(43 81 80 44)

G:=sub<Sym(96)| (1,92,59,31)(2,32,60,93)(3,94,49,33)(4,34,50,95)(5,96,51,35)(6,36,52,85)(7,86,53,25)(8,26,54,87)(9,88,55,27)(10,28,56,89)(11,90,57,29)(12,30,58,91)(13,79,61,42)(14,43,62,80)(15,81,63,44)(16,45,64,82)(17,83,65,46)(18,47,66,84)(19,73,67,48)(20,37,68,74)(21,75,69,38)(22,39,70,76)(23,77,71,40)(24,41,72,78), (1,47,7,41)(2,79,8,73)(3,37,9,43)(4,81,10,75)(5,39,11,45)(6,83,12,77)(13,87,19,93)(14,33,20,27)(15,89,21,95)(16,35,22,29)(17,91,23,85)(18,25,24,31)(26,67,32,61)(28,69,34,63)(30,71,36,65)(38,50,44,56)(40,52,46,58)(42,54,48,60)(49,74,55,80)(51,76,57,82)(53,78,59,84)(62,94,68,88)(64,96,70,90)(66,86,72,92), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96), (1,6,59,52)(2,51,60,5)(3,4,49,50)(7,12,53,58)(8,57,54,11)(9,10,55,56)(13,16,61,64)(14,63,62,15)(17,24,65,72)(18,71,66,23)(19,22,67,70)(20,69,68,21)(25,30,86,91)(26,90,87,29)(27,28,88,89)(31,36,92,85)(32,96,93,35)(33,34,94,95)(37,75,74,38)(39,73,76,48)(40,47,77,84)(41,83,78,46)(42,45,79,82)(43,81,80,44)>;

G:=Group( (1,92,59,31)(2,32,60,93)(3,94,49,33)(4,34,50,95)(5,96,51,35)(6,36,52,85)(7,86,53,25)(8,26,54,87)(9,88,55,27)(10,28,56,89)(11,90,57,29)(12,30,58,91)(13,79,61,42)(14,43,62,80)(15,81,63,44)(16,45,64,82)(17,83,65,46)(18,47,66,84)(19,73,67,48)(20,37,68,74)(21,75,69,38)(22,39,70,76)(23,77,71,40)(24,41,72,78), (1,47,7,41)(2,79,8,73)(3,37,9,43)(4,81,10,75)(5,39,11,45)(6,83,12,77)(13,87,19,93)(14,33,20,27)(15,89,21,95)(16,35,22,29)(17,91,23,85)(18,25,24,31)(26,67,32,61)(28,69,34,63)(30,71,36,65)(38,50,44,56)(40,52,46,58)(42,54,48,60)(49,74,55,80)(51,76,57,82)(53,78,59,84)(62,94,68,88)(64,96,70,90)(66,86,72,92), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96), (1,6,59,52)(2,51,60,5)(3,4,49,50)(7,12,53,58)(8,57,54,11)(9,10,55,56)(13,16,61,64)(14,63,62,15)(17,24,65,72)(18,71,66,23)(19,22,67,70)(20,69,68,21)(25,30,86,91)(26,90,87,29)(27,28,88,89)(31,36,92,85)(32,96,93,35)(33,34,94,95)(37,75,74,38)(39,73,76,48)(40,47,77,84)(41,83,78,46)(42,45,79,82)(43,81,80,44) );

G=PermutationGroup([[(1,92,59,31),(2,32,60,93),(3,94,49,33),(4,34,50,95),(5,96,51,35),(6,36,52,85),(7,86,53,25),(8,26,54,87),(9,88,55,27),(10,28,56,89),(11,90,57,29),(12,30,58,91),(13,79,61,42),(14,43,62,80),(15,81,63,44),(16,45,64,82),(17,83,65,46),(18,47,66,84),(19,73,67,48),(20,37,68,74),(21,75,69,38),(22,39,70,76),(23,77,71,40),(24,41,72,78)], [(1,47,7,41),(2,79,8,73),(3,37,9,43),(4,81,10,75),(5,39,11,45),(6,83,12,77),(13,87,19,93),(14,33,20,27),(15,89,21,95),(16,35,22,29),(17,91,23,85),(18,25,24,31),(26,67,32,61),(28,69,34,63),(30,71,36,65),(38,50,44,56),(40,52,46,58),(42,54,48,60),(49,74,55,80),(51,76,57,82),(53,78,59,84),(62,94,68,88),(64,96,70,90),(66,86,72,92)], [(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96)], [(1,6,59,52),(2,51,60,5),(3,4,49,50),(7,12,53,58),(8,57,54,11),(9,10,55,56),(13,16,61,64),(14,63,62,15),(17,24,65,72),(18,71,66,23),(19,22,67,70),(20,69,68,21),(25,30,86,91),(26,90,87,29),(27,28,88,89),(31,36,92,85),(32,96,93,35),(33,34,94,95),(37,75,74,38),(39,73,76,48),(40,47,77,84),(41,83,78,46),(42,45,79,82),(43,81,80,44)]])

36 conjugacy classes

class 1 2A2B2C2D 3 4A4B4C···4H4I4J4K4L4M···4Q6A6B6C12A···12F12G12H12I12J
order122223444···444444···466612···1212121212
size1111122224···4666612···122224···48888

36 irreducible representations

dim111111112222444
type+++++++++++-+-
imageC1C2C2C2C2C2C2C2S3D6D6C4○D42- 1+4Q83S3Q8○D12
kernelC42.156D6C122Q8C422S3Dic6⋊C4C4.Dic6C4.D12C4⋊C4⋊S3C3×C42.C2C42.C2C42C4⋊C4C12C6C4C2
# reps111242411164224

Matrix representation of C42.156D6 in GL8(𝔽13)

120000000
012000000
001200000
000120000
00001010
00006101
0000110120
0000111712
,
00100000
00010000
120000000
012000000
00008200
00000500
000012082
00008105
,
85670000
836120000
67580000
6125100000
000012030
000051203
00008010
000012881
,
58760000
381260000
76850000
1261050000
000012030
000031210
00008010
000015012

G:=sub<GL(8,GF(13))| [12,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,1,6,11,1,0,0,0,0,0,1,0,11,0,0,0,0,1,0,12,7,0,0,0,0,0,1,0,12],[0,0,12,0,0,0,0,0,0,0,0,12,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,8,0,12,8,0,0,0,0,2,5,0,1,0,0,0,0,0,0,8,0,0,0,0,0,0,0,2,5],[8,8,6,6,0,0,0,0,5,3,7,12,0,0,0,0,6,6,5,5,0,0,0,0,7,12,8,10,0,0,0,0,0,0,0,0,12,5,8,12,0,0,0,0,0,12,0,8,0,0,0,0,3,0,1,8,0,0,0,0,0,3,0,1],[5,3,7,12,0,0,0,0,8,8,6,6,0,0,0,0,7,12,8,10,0,0,0,0,6,6,5,5,0,0,0,0,0,0,0,0,12,3,8,1,0,0,0,0,0,1,0,5,0,0,0,0,3,2,1,0,0,0,0,0,0,10,0,12] >;

C42.156D6 in GAP, Magma, Sage, TeX

C_4^2._{156}D_6
% in TeX

G:=Group("C4^2.156D6");
// GroupNames label

G:=SmallGroup(192,1257);
// by ID

G=gap.SmallGroup(192,1257);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,120,758,219,268,675,297,192,6278]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^4=1,c^6=b^2,d^2=a^2,a*b=b*a,c*a*c^-1=d*a*d^-1=a^-1,c*b*c^-1=a^2*b^-1,d*b*d^-1=b^-1,d*c*d^-1=a^2*b^2*c^5>;
// generators/relations

׿
×
𝔽